Automatic Determination of Communication
Topologies in Mobile Systems

Arnaud Venet

LIX, Ecole Polytechnique, 91128 Palaiseau, France.
venet@lix.polytechnique.fr
http://lix.polytechnique.fr/” venet

Abstract. The interconnection structure of mobile systems is very dif-
ficult to predict, since communication between component agents may
carry information which dynamically changes that structure. In this pa-
per we design an automatic analysis for statically determining all po-
tential links between the agents of a mobile system specified in the m-
calculus. For this purpose, we use a nonstandard semantics of the -
calculus which allows us to describe precisely the linkage of agents. The
analysis algorithm is then derived by abstract interpretation of this se-
mantics.

Keywords. m-calculus, nonstandard semantics, abstract interpretation.

1 Introduction

We are interested in analyzing the evolution of the interconnection structure,
or communicalion topology, in a mobile system of processes, abstracting away
all computational aspects but communication. Therefore, we can restrict our
study to the m-calculus [Mil91, MPW92], which is a widely accepted formalism
for describing communication in mobile systems. Whereas the communication
topology of systems written in ¢sP [Hoa85] or ccs [Mil89] can be directly ex-
tracted from the text of the specification, a semantic analysis is required in the
m-calculus, because communication links may be dynamically created between
agents. In the absence of automatic analysis tools this makes the design and de-
bugging of mobile systems very difficult tasks (see [DPLT96] for a detailed case
study). In this paper we propose a semantic analysis of the w-calculus based on
Abstract Interpretation [CC77, CC92] for automatically inferring approximate
but sound descriptions of communication topologies in mobile systems.

In a previous work [Ven96b] we have presented an analysis of the w-calculus
which relies on a nonstandard concrete semantics. In that model recursively de-
fined agents are identified by the sequence of replication unfoldings from which
they stem, whereas the interconnection structure is given by an equivalence rela-
tion on the agent communication ports. That semantics is inspired of a represen-
tation of sharing in recursive data structures [Jon81] which has been applied to
alias analysis [Deu92]. However, the equivalence relation does not capture an im-
portant piece of information for debugging and verification purposes: the instance

of the channel that establishes a link between two agents. In this paper we re-
design our previous analysis in order to take this information into account, while
still preserving a comparable level of accuracy. Surprisingly enough, whereas our
original analysis was rather complicated, involving heavy operations like transi-
tive closure of binary relations, the refined one is tremendously simpler and only
requires very basic primitives.

The paper is organized as follows. In Sect. 2 we introduce our representation
of mobile systems in the m-calculus. Section 3 describes the nonstandard seman-
tics of mobile systems, which makes instances of recursively defined agents and
channels explicit. The abstract interpretation gathering information on commu-
nication topologies is constructed in Sect. 4. In Sect. 5 we design a computable
analysis which is able to infer accurate descriptions of unbounded and nonuni-
form communication topologies. Related work is discussed in Sect. 6.

2 DMobile Systems in the w-Calculus

We consider the asynchronous version of the polyadic 7-calculus which was intro-
duced by Turner [Tur95] as a semantic basis of the PICT programming language.
This restricted version has simpler communication primitives and a more op-
erational flavour than the full w-calculus, while still ensuring a high expressive
power!. Let A/ be a countable set of channel names. The syntax of processes is
given by the following grammar:

P :=cllxy,. .., x,)] Message

| ?x1,...,zn).P Input guard

| *c?[x1,...,2,].P Guarded replication

| (P]|P) Parallel composition

| (vz)P Channel creation
where ¢, x,x1, . .., T, are channel names. Input guard and channel creation act as
name binders, i.e. in the process c?[zy,...,z,].P (resp. (vz)P) the occurrences
of z1,...,2z, (resp. z) in P are considered bound. Usual rules about scoping,

a-conversion and substitution apply. We denote by fu(P) the set of free names
of P, i.e. those names which are not in the scope of a binder.

Following the cHAM style [BB92], the standard semantics of the w-calculus
is given by a structural congruence and a reduction relation on processes. The
congruence relation “=” satisfies the following rules:

(i) P =@ whenever P and @ are a-equivalent.

(i) P1Q=Q|P.

(i) P (Q|R)=(P|Q)|R.

(i) (va)(vy)P = (vy)(ver) P.

(v) (w2)P | Q= (vz)(P | Q) if 2 & In(Q).
The reduction relation is defined in Fig. 1, where P{z1/y1,...,Z,/yn} denotes
the result of substituting every name z; for the name y; in P. This may involve
a-conversion to avoid capturing one of the x;’s.

! We can encode the lazy A-calculus for example [Bou92].

clxy, ...,z | Y1y yn]-P = P{zi/y1, -, Tn/Yn}

ey, ... zn] | %¢?[yr, ..oy yn]-P = P{x1/y1, .- &0 /yn} | *?{y1,. -, yn].P

PP PP=P Po5Q Q=Q __ PP
(vz)P — P’ P — Q' PlQ—P|Q

Fig. 1. Reduction relation in the standard semantics.

We now have to define what we mean by a “mobile system in the m-calculus”.
We cannot simply allow a mobile system to be described by any process S. In
fact, we are unable to design the nonstandard semantics, and hence the analysis,
if we do not require S to be closed, i.e. fn(S) = @. In other words, we must
consider the system in a whole. In order to make the semantic constructions of the
following sections simpler, we add further constraints to the structure of mobile
systems, which are inspired of Milner’s definition of friendly systems [Mil91].
We denote by x a tuple (zy,...,x,) of channel names. We say that a process
is a thread if it is made of a message possibly preceded by some input guards:
c1?[x1] ... cp?[xp].cl[x]. We call resource a replicated process of the following
form:

*?[x].(wy)(T1 | -+ | Tn)
where all the T;’s are threads. A mobile system S is then defined as:
S=we)(Ry || Rn|To)

where the R;’s are resources and Ty is a message, the initial thread, which orig-
inates all communications in the system. The names in c are called the initial
channels. Therefore, all threads and channels created by a mobile system are
fetched from its resources.

Example 1. We model a system S which sets up a ring of communicating pro-
cesses, where each component agent may only communicate with its left and
right neighbours. The system generating a ring of arbitrary size is defined as

follows:
S = (vmake)(vmon)(vieft,)(Ry | Rz | makel[left,])

where
R, = xmake?[left].(vright)(mon![left, right] | make![right])

is the resource that adds a new component to the chain of processes and
Ry = sxmake?[left].monl![left, left,]

is the resource that closes the ring. The name “mon” should be seen as a reference
to a hidden resource (for example a C program) which monitors the behaviour

of a ring component?. For the sake of clarity, we denote by ¢ the free names of
all agents in the system at every stage of its evolution. Then, a ring with four
components can be generated by S in four steps as follows:

S — (vc)(Ry | Ry | mon![left,, right,] | make![right,])
— (vc)(Ry | Re | mon![lefty, right,] | mon![right,, right,]
| makel[right,])
— (vc)(Ry | Re | mon![lefty, right,] | mon![right,, right,]
| mon![right,, rights] | make![rights])
— (vc)(Ry | Re | mon![lefty, right,] | mon![right, , right,]
| mon![right.,, rights] | mon![right, left,])

The right;’s represent the successive instances of the channel right created at
each request to R;. g

As illustrated by the above example, the configuration of a mobile system at
any stage of its evolution has the following particular form:

(VC)(ﬁ1||Rrrg|\T1||Tn)

Resources Threads

where Ry, ..., R,, are the resources originally present in the system. Intuitively,
every thread T; or channel ¢; present in the configuration could be unambigu-
ously identified with the instant of its creation in the history of computations.
Unfortunately, this precious information is not captured by the standard seman-
tics. The process of a-conversion in particular, which is inherent to the definition
of the semantics, destroys the identity of channels. The purpose of the next sec-
tion is to introduce a refined semantics of the m-calculus which restores this
information.

3 Nonstandard Semantics of Mobile Systems

Let S be a mobile system described in the m-calculus. In order to identify the
threads and channels created by the system, we must be able to locate the
syntactic components of S from which they stem. This is the role of the following
notations. We denote by R(S) the number of resources in S. We assume that
every resource is assigned a unique number r in {1,...,R(S)}. For any such
r, we denote by S, the corresponding resource in S and by T(r) the number
of threads spawned by the resource. We similarly assign a unique number ¢ in
{1,...,T(r)} to every thread in S, and we denote by S, this thread, which has
the following form:

Spt = C1?[X1] - CA(ryt)—1 ?[XA(r,t)fl]-cA(r,t)![XA(r,t)]

% Recall that we only take communications into account, abstracting away all other
computational aspects like the details of the monitoring procedure here.

where A(r, t) is the number of input/output actions in S, ;. Note that A(r,t) is al-
ways nonzero because a thread contains at least one message. For 1 < n < A(r, t),
we denote by act(r,t,n) the n-th input/output action of S, ;, and by S, ; @ n the
subterm ¢, ?[Xy] . .. ca(r)![Xa(rp)] Of Syt starting at the n-th input/output ac-
tion act(r, ¢, n). By convention, the initial thread is assigned the resource number
0. Finally, given a resource number r such that

Sr = #c?[x].(vyr) ... (vyn)(Th | -+ | Trory)
we put guard(r) = ¢?[x] and C(r) = {y1,...,yn}

Example 2. We consider the system of Example 1 which contains two resources
Ry and Ry. We put S; = Ry and S; = R,. Thus we have:

— guard(1l) = make?[left], C(1) = {right}, T(1) = 2,511 = monl![left, right],
S1,2 = makel[right], A(1,1) = A(1,2) = 1.

— guard(2) = make?[left], C(2) = 0, T(2) = 1, S>1 = monl![left, lefty], A(2,1) =
1.

The initial thread is Sp1 = make![left,]. O

A configuration of S in the nonstandard semantics is a finite set of thread
instances. We do not need to represent resources since they are statically given
and accessible by all the threads in any state of the system. A thread instance
is a tuple (r,t,n,id, E) where 1 <r < R(S), 1 <t <T(r), 1 <n < A(rt), id is
a thread identifier and E is an environment. The thread identifier is the history
of resource requests which led to the creation of the thread, starting from the
initial one. A resource request being nothing more than a message to a replicated
process, it can be identified with the thread that released this message. If we
denote by

The(S) = {(r,#) | 1 <7 <R(S),1 <t < T(r)}

the set of all threads originally present in the system, then id € Thr(S)*. The
empty sequence ¢ is the identifier of the initial thread. The environment E maps
every free name z € fn(S,: @ n) of the thread instance to a channel instance.
A channel instance is a tuple (r',y,id') where 1 < ' < R(S), y € C(r') and
id' is a channel identifier. Instances of initial channels are represented similarly
except that they are assigned the resource number 0. The channel identifier
is the history of resource requests that led to the creation of the instance of
channel y by resource r’. Therefore, channel identifiers and thread identifiers are
represented identically, i.e. id' € Thr(S)*. Similarly, the identifier of an initial
channel is the empty sequence €.

We assume that there is no overlapping of scopes in the mobile system, i.e.
we forbid terms like z?[y].y?[y].y![z] or *c?[y, z].(vy)z![y]. This assumption can
always be satisfied by appropriate a-conversion. The transition relation “s” of
the nonstandard operational semantics is defined in Fig. 2 and Fig. 3. It should
be clear that without the hypothesis on name scoping, the definition of the
resulting environments is ambiguous. The two transition rules correspond to the

two kinds of operations that may arise in a mobile system: resource fetching and
communication between threads. The initial configuration Cy of the nonstandard
semantics is given by Cy = {(0,1,1,¢, Ep)} where the environment Ey maps any
z € n(Sp1 @ 1) to the instance (0, z,€) of the corresponding initial channel.

Example 3. Using the notations of Example 2, a ring with four components is
described in the nonstandard semantics as follows:

,

mon + (0, mon,¢), >)

<171;17(0>1)7 leﬁ = (Oa left075)7
right — (1, right, (0, 1))

mon + (0, mon,¢),
<1, 1,1,(0,1).(1,2), left > (1, right, (0,1)) > ;
right — (1, right, (0,1).(1,2))

mon > (0, mon,¢),
<17 1,1,(0,1).(1,2)%, ¢ left = (1, right, (0,1).(1,2)) > ,
right — (1, right, (0,1).(1,2)?)

mon +— (0, mon,),
<2, 1,1,(0,1).(1,2)%, 4 left — (1, right, (0,1).(1,2)*) >
left, — (0, lefty, €) J

\

The generative process of the ring is now made entirely explicit thanks to the
information carried by thread and channel identifiers (compare with the corre-
sponding computation in the standard semantics given in example 1). a

Both semantics can be shown to be equivalent by defining the translation of
a nonstandard configuration C of S to a term w(C) of the w-calculus and by
applying a bisimulation argument. We may assume without loss of generality
that the m-terms we will generate are built upon the set of names A/’ defined as
the disjoint union of A/ with the set of all channel instances (r,y, id) that could
be created by S. We identify an environment with a substitution over N”'. We
denote by Po the result of applying a substitution o to a m-term P. Then, for
any nonstandard configuration

C= {(rl,tl,nl, idl, E1>, ey (rk,tk,nk, idk, Ek>}
we define the translation 7(C') as follows:
m(C) = (e)(SLEL | -+ | Sr(s) Brs) | (Sritn @na)En |-+ | (Sry i @) Eg)

where, for 1 < r < R(S), E/ is the environment which maps any z € fn(S,) to
(0,z,€). The channels in ¢ are all those which have a free occurrence in some
agent of the top-level parallel composition of 7(C).

Theorem4. If Co & C and C > C', then ©(C) = n(C"). If Co > C and 7(C) —
P, then there exists C' such that C > C' and P = n(C").

If there are p € C'and 1 < ' < R(S) such that:
- K= (r,t,n,id,E)

— act(r,t,n) = !z, ..., x¢]
— guard(r') = ¢?[y1, . -, Yk
- E(z) = (0,¢,¢)

then

Co(C—{up)U{{", t'1,id.(r,t), Ey) | 1 <t < T(r")}
where, for all 1 < ¢’ < T(r') and z € fIn(S, p @ 1)

E(z;) fz=y;, 1<i<k
Eu(z) =< (', z,id.(r,t)) if z € C(r')
(0,z,¢) otherwise, i.e. if z is an initial channel

Fig. 2. Resource fetching.

A nonstandard configuration describes the communication topology of a mo-
bile system at a particular moment of its evolution in terms of the resources
initially present in the system. Therefore, the nonstandard semantics is a good
basis for deriving an analysis, since the resulting information can be used to
determine the role of each syntactic component of the system in the evolution
of its interconnection structure. Constructing a computable abstraction of this
semantics is the purpose of the next section.

4 Abstract Interpretation of Mobile Systems

We denote by C the set of all possible nonstandard configurations for a system S.
We are actually interested in the set S = {C' € C | Co & C} of configurations of
the system which are accessible from the initial one by a finite sequence of com-
putations. This is the collecting semantics of S [Cou81], which can be expressed

as the least fixpoint of the U-complete endomorphism IF on the complete lattice
(p(C),C,U,0,Nn,C) defined as follows:

F(X)={Co}U{C|3C" € X:C"vC}

Following the methodology of Abstract Interpretation [CC77, CC92], we con-
struct a lattice (C*,C, 1, L,M, T), the abstract domain, allowing us to give finite
descriptions of infinite sets of configurations. This domain is related to p(C) via
a monotone map 7 : (C*,C) — (p(C), C), the concretization function. Then we
derive an abstract counterpart IF* : C! — C* of IF which must be sound with
respect to 7, that is: IF o 4 C ~y o IF¥.

The abstract domain C* is based upon a global abstraction of all envi-
ronments in a nonstandard configuration. We assume that we are provided

If there are u, p € C such that:

- K= (r,t,n,id,E)
—p={(r't',n id E")

— act(r,t,n) = zl[zy, ..., x¢]
—act(r',t',n") = y?y1,- -, Ukl
- E(z) = E'(y)

then

C> (C—{mp}) UL t',n" +1,id,E")}
where, for all z € fn(S, p @Qn' + 1)

" _ E(mz) ifz=y;,1<i<k
E'(z) = {E’(z) otherwise

Fig. 3. Communication between threads.

with a lattice (Idg,EQ,HQ,J_Q,HQ,TQ) and a monotone map s : (Idg,g2) —
(p(Thr(S)* x Thr(S)*),C). This lattice is left as a parameter of our abstraction.
It will be instantiated in the next section when we will set up an effective anal-
ysis. Let Chan(S) be the set {(r,t,n,z,r",y) | (r,t) € Thr(S),n € A(r,t),z €
(S, @ n),1 < < R(S),y € C(r')} of all possible syntactic relations be-
tween a free name in a thread and a channel created by a resource of the system.
The abstract domain C* is then defined as C* = Chan(S) — Id%, the lattice
operations being the pointwise extensions of those in Idg. Given an abstract
configuration C¥, v(C¥) is the set of nonstandard configurations C such that,
for any (r,t,n,id,E) € C and any x € fn(S,; @ n), the following condition is
satisfied:
B(z) = (r',y,id') = (id, id') € v2(C*(r,t,n,2,7",y))

Monotonicity of « is readily checked. For the sake of readability, we will denote
an abstract configuration C* by its graph {(sq — idﬁl), ooy (5 > id%) Y, where
the s;’s are in Chan(S) and each idﬁ- is in Id%. We may safely omit to write pairs
of the form (3 — L,).

The abstract semantics is given by a transition relation ~~ on abstract config-
urations. In the relation C’f ~ 03, the configuration 03 represents the modifica-
tion to the communication topology of Cf induced by an abstract computation.
Therefore, the function IF* is given by:

FH(C*) = Ciu ctu | [{TF | O~ TF)

where O’g is the initial abstract configuration defined as {({0,1,1,z,0,z) — &3 |
z € fn(Sp,1 @ 1)}, e2 being a distinguished element of Id% such that (c,¢) €
~Y2(e2). The transition relation ~- is defined in Fig. 4 and Fig. 5 by using the

If there are ((r,t,n,z,0,c) — id*) € C* and 1 < ' < R(S) such that:

— act(r,t,n) = zl[x1, ..., xk)
— guard(r') = ¢?[y1, . -, Yk
—id" £ 1,

then

CF s {(5e > id},. Y| se= (' 1,2, 0" w), 1 <t' < T}

z,r' w

where, for all 1 <t/ < T(r')

push(,,’t)(Cﬁ(r,t,n,:ri,r”,w)) ifz=y;,1<i<k

1o if z € C(r') and (r",w) # (1, 2)
idg,yzmnﬁw = dpush(m)(C’ﬂ(r,t,n,w,O,c)) if z € C(r') and (r",w) = (1, 2)
1, if z is initial and (r",w) # (0, 2)
spush(C*(r,t,n,z,0,c)) if z is initial and (", w) = (0, 2)

Fig. 4. Abstract resource fetching.

following abstract primitives: a “push” operation push, : Idg — Idg, a “double
push” dpush, : Idg — Idg and a “single push” spush_ : Idg — Idg defined for
any 7 € Thr(S), a “synchronization” operator sync : Idg X Idg — Idg and a
“swapping” operation swap : Idg — Idg. These operations depend on the choice
of Idg, however they must satisfy some soundness conditions:

— For any 7 € Thr(S) and id* € 1d}, {(id.7,id") | (id,id") € ~,(id*)} C
72 (push, (id?)).

— For any 7 € Thr(S) and id* € 1d}, {(id.7,id.7) | (id,id") € y(id*)} C
72(dpush, (id")).

— For any 7 € Thr(S) and id* € 1d%, {(id.r,e) | (id,id") € v (id*)} C
Y2 (spush, (id*)).

— For any id* € 1d%, {(id', id) | (id,id") € 72(id*)} C yo(swap(id®)).

— For any id},id% € 1d%, {(idy, idy) | Jid" € Thr(S)* : (idy,id") € o (id%) A
(idy,id") € v2(id%)} C vo(sync(id?, id?)).

Intuitively, the push_ operation concatenates 7 to the first component of every
pair of identifiers. The dpush_ and spush_ operations act similarly, except that
dpush_ duplicates the first component into the second one and spush_ sets the
second component to €. The swap operation permutes the components of every
pair of identifiers. The sync operation extracts pairs of identifiers corresponding
to redexes, i.e. pairs of agents linked to the same instance of a channel.

Proposition 5. If C € v(C*) and C > C', then there exists ' in C*, such that
Ot T and €' € v(Ct L TY).

If there are (36 — id?), (36 > id%) € C? such that:

- = (T,t,n,m,r",u)

- 2 = (rlatlanlay)r”)u)

— act(r,t,n) = zl[zy, ..., x¢]

—act(r',t',n") = y?y1,- -, Ukl

— id% = sync(id"®, id%) # L,
then

CF o {(se = id%) |56 = (0 +1,2,7" w)}

where, if we put ﬁg7r,,,7w = C¥ryn,t,z;, 7" w) for 1 <i <k
id! _ swap(sync(swap(ﬁgm,,,7w), swap(id®))) ifz=y;, 1<i<k

zrtw CHr' t',n!)z, ™ w) otherwise

Fig. 5. Abstract communication between threads.

The soundness of IF? is then a simple consequence of the previous result. It is
remarkable that the soundness of the whole semantics depends only on very
simple conditions over some primitive operations. This means that we only need
to construct the domain Idg and instantiate those operations to obtain a com-
putable and sound abstract semantics. This is the goal that we will achieve in
the next section.

5 Design of a Computable Analysis

The collecting semantics S is the least fixpoint of IF. Therefore, by Kleene’s
theorem, it is the limit of the following increasing iteration sequence:

{30 =0
8n+1 =]F(Sn)

Following [CC77, Cou81] we will compute a sound approximation S* of S by
mimicking this iteration, using IF* instead of IF. Since the resulting computation
may not terminate, we use a widening operator to enforce convergence in finitely
many steps. A widening operator V : C¥ x C* — C* must satisfy the following
conditions:

— Forany C!,Clect, cfucticoivcl

— For any sequence (C}),,>0, the sequence (Ci)n>0 defined as:

c, =ct
6i+1 = Uﬁz Vv szﬂ

is ultimately stationary.

Note that we can construct a widening on C* from an existing widening V» on
Idg by pointwise application of V5. We define the approximate iteration sequence
(Sﬁn)nzo as follows:

Sy =1
Sﬂn-i-l = Sﬂn \% IFﬁ(Sﬂn) if _'(Fﬂ(sﬁn) c Sﬁn)
Sty =8, if F¥(St,) C S,

Convergence is ensured by the following result:

Theorem 6 [Cou81]. The sequence (S%,)n>0 is ultimately stationary and its
limit S* satisfies S C v(S*). Moreover, if N > 0 is such that S*y,1 = Sty,
then for alln > N, Sf, = Sty.

This provides us with an algorithm for automatically computing a sound approx-
imation of S. It now remains to instantiate the domain Idg and the associated
abstract primitives. We will design two abstractions of o(Thr(S)* x Thr(S)*),
each one capturing a particular kind of information.

Our first abstraction captures sequencing information and is based upon
an approximation of thread and channel identifiers by regular languages. Let
(Reg, C,U, 0,N, Thr(S)*) be the lattice of regular languages over the alphabet
Thr(S) ordered by set inclusion. We define Idﬁeg as the product lattice Reg x
Reg. The concretization yyeg is given by Yreg(L1, L2) = L1 x La. The associated
abstract primitives are defined as follows:

- pushieg(Ll, Lg) = (Ll.’]’, Lg)
dpush’*®(Ly, Ly) = (Ly.7,L;.7)
spush;*¢(Ly, Ly) = (L;1.7,¢€)

— swap™8(Ly, L2) = (L2, L)

- syne (L, L), (14, 1) = { |
The soundness conditions are easily checked. The element £5°® is given by (g,¢).
Since Idfeg may have infinite strictly increasing chains, we must define a widen-
ing operator V5®. It is sufficient to construct a widening V,eg on Reg and to
apply it componentwise to elements of Idﬂeg. A simple choice for Ly Vieg Lo
consists of quotienting the minimal automaton of Ly U Ly such that any letter
of the alphabet may occur at most once in the automaton. The resulting au-
tomaton is minimal, and there are finitely many such automata, which ensures
the stabilization property.

The second approximation captures counting relations between the compo-
nents of a tuple of thread or channel identifiers. This will allow us to give nonuni-
form descriptions of recursively defined communication topologies. Suppose that
we are given an infinite set of variables V. We assign two distinct variables z,
and y, to each element 7 of Thr(S). Now we consider a finite system K of lin-
ear equality constraints over the variables V with coefficients in Q. If we denote

Li,LY) ifLyn Ly, #0
0,0) otherwise

by |id|; the number of occurrences of 7 in the sequence id, the concretization
Ynum (K) of K is the set of all pairs (id,id') such that the following variable
assignment:

{z; + |id|,y, = |id'|; | 7 € Thr(S)}

is a solution of K. The domain of finite systems of linear equality constraints over
V ordered by inclusion of solution sets can be turned into a lattice Id%, . This
domain has been originally introduced by Karr [Kar76]. We refer the reader to
the original paper for a detailed algorithmic description of lattice operations. We
could use more sophisticated domains of computable numerical constraints such
as linear inequalities [CH78] or linear congruences [Gra9l], but the underlying
algorithmics is much more involved. Nevertheless, giving a rigorous construction
of the abstract primitives on Idfmm would be still very technical. Therefore, for
the sake of readability, we only outline the definition of these primitives:

— push"™(K) is the system of constraints K in which we have replaced every
occurrence of the variable x, by the expression x, — 1.

— If K is a system of linear equality constraints, we denote by K, the sys-
tem in which we have removed all constraints involving a variable y,. Then
dpush?"™(K) is the system push’"™(K,) with the additional constraints
Xy =y, for any 7' € Thr(S).

— Similarly, spush]"™(K) is the system push!"™(K,) with the additional
constraints y,» = 0, for any 7' € Thr(S5).

— swap"'™(K) is the system in which we have replaced each occurrence of z,
by y, and vice-versa.

— Let K; and K, be two systems of linear equality constraints. For any 7 €
Thr(S), let 2/ and y. be fresh variables of V. Let K} be the system K,
in which we have substituted each occurrence of x, (resp. y,) by x! (resp.
yr). We construct the system Kj, as the union of K; and K} together
with the additional constraints y, = y., for any 7 € Thr(S). Then, we
define sync™™ (K, K») as the system K » in which we have removed all
constraints involving a variable y, or y., each remaining variable z! being
renamed in y;.

Note that a normalization pass (namely a Gauss reduction) has to be performed
on the system after or during each of these operations. The element e}"™ is
given by the system of constraints {z; = 0,y, = 0|7 € Thr(S)}. Since we only
consider systems defined over the finite set of variables {z,,y, | 7 € Thr(5)},
we cannot have infinite strictly increasing chains [Kar76]. Therefore, we can use
the join operation Ll ,,, as a widening.

Example 7. We consider the product of domains Idfieg and Idﬁum and we run
the analysis on the system of Example 1 with the notations of Example 2. For
the sake of readability, at each step we only write the elements of the abstract
configuration that differ from the previous iteration. Moreover, we do not figure
trivial constraints of the form z, = 0 whenever they can be deduced from the

Idgeg component.

First iteration.

(0,1, 1, make, 0, make) — ((¢,€), Thum),
(0)]—71>left070>left0> = <(8)8))T

Second iteration.

(<1>]-7 1,m0n,0,m0n> = <((07 1),8),1‘(071) = 1>7
(1,1,1,1left, 0, lefty) = (((0,1),¢),z00,1) = 1),
(1,1, 1, right, 1, right) — (((0,1),(0,1)), (0,1
(1,2, 1, make, 0, make) — (((0,1),¢),z(0,1) = 1),
(1; 2,1, right, 1, right) = <((07 1)) (07 1))) Z(0,1) = Y(0,1) = 1>;
<2>]-7 1,m0n,0,m0n> = <((07 1),8),1‘(071) = 1>7
(2,1,1,l6ﬁ0,0,l6ﬁ0> = <((07 1)75)737(0,1) = 1>7

L (2, 1,1, left,0,lefty) — (((0,1),e),z0,1) = 1)

Third iteration.
<17 17 17 mon, 07 mOH> = (((07 1)(6 + (15 2))75)7 m(0,1) = 1>
(11,1, left, 0, right) < 1)),4 700 =Y
1’(172) =1
((0,1).(e + (1,2)), (0, 1).(e + (1,2))),
=Y,1) = 1 >
Y1,2)

O
8 &
=)
b=

(1,2,1, make, 0, make) — (((0,1).(e + (1,2)),5),3:(071) =1)
((0,1).(e +(1,2)), (0, 1).(e + (1,2))),
(1,2,1, right, 1, right) < {x((),l) = Yo, =1 > ,
L(1,2) = Y@,2)
(2,1,1, mon, 0, mon) ((0,1).(e + (1, €),r,1) =1
((0,1).(e + (1,

2,1 —
(2,1,1,lefty,0,lefty) >
(2,1,1, left, 0, right)

Fourth iteration.

\

((1,1,1,mon,0,mon) > (((0,1).(1,2)*,&),z(0,1) = 1),
((0,1).(1,2)*,(0,1).(e + (1,
(1,1,1,left, 0, right) < {56(0,1) =y =1
Z(12) =Y@u,2 +1
((0,1).(1,2)%,(0,1).(1,2)"),
(1,1,1, right, 1, right) < {56(0,1) =Y, =1 >)
L(1,2) = Y@1,2)
% (1,2,1, make, 0, make) — (((0,1).(1,2)*,¢),z(0,1) = 1),
((0,1).(1,2)%,(0,1).(1,2)"),
(1,2,1, right, 1, right) + < {33(0,1) =Yo,1) =1
T(1,2) = Y(@1,2)
(2,1,1,mon,0,mon) > (((0,1).(1,2)*,€),z1) = 1),
(2,1,1,lefty, 0, lefty) = (((0,1).(1,2)%,€),x00,1) = 1),
((0,1).(1,2)*,(0,1).(¢ + (1,
(2,1,1,left, 0, right) < {33(0,1) =Yo,1) =1
L T2 =Yaz +1

Fifth iteration.

((0,1).(1,2)*,(0,1).(1,2)"),
(1,1, 1, left, 0, right) Z(0,1) = Y(0,1) =1)
T2 =Yaz +1
((0,)(1,2) (0,1).(1,2)"),
(2,1, 1, left, 0, right) — {w(o,1) =y, =1
T(12) =Yaz2 +1

At the sixth iteration step we find the same configuration. Therefore, following
Theorem 6, we know that the limit has been reached. Putting all previous
computations together, we obtain:

((0,1,1, make, 0, make) — ((¢,€), Thum),)
(0,1,1, lefty, 0, lefty) +— ((£,€), Tnum),
(1,1,1,mon,0,mon) > (((0,1).(1,2)%,€),7@0,1) = 1),

(1; 71; left)oa left0> = <((07 1),6),1‘(071) =]'>’
((0,1).(1,2)",(0,1).(1,2)"),
(1,1,1, left, 0, right) {m(oyl) =Y, =1)
T(12) =Yaz2 +1
((0,1).(1,2)%,(0,1).(1,2)"),
(1,1,1, right, 1, right) T(0,1) = Yo0,1) = 1 ;
St — T(1,2) = Y(@1,2)
(1,2,1, make, 0, make) ~ (((0,1).(1,2)*,¢),z(01) = 1),
((0,1).(1,2)*,(0,1).(1,2)*),
(1,2,1, right, 1, right) + {56(0,1) =Y, =1)
T(1,2) = Y(@1,2)
(2,1,1,mon,0,mon) > (((0,1).(1,2)%,€),7@0,1) = 1),
(2,1,1,lefty, 0, lefty) = (((0,1).(1,2)%,€),z00,1) = 1),
(2,1,1,1eft,0,lefty) = (((0,1),€),201) = 1),
((0,1).(1,2)*,(0,1).(1,2)"),
(2,1,1,left, 0, right) {33(0,1) =Yo,1) =1
(T2) =Yaz 1)

This is a very accurate description of the communication topology of the ring.
In particular, we are able to distinguish between instances of recursively defined
agents and channels. O

6 Conclusion

We have described a parametric analysis framework for automatically inferring
communication topologies of mobile systems specified in the m-calculus. We have
instantiated this framework to obtain an effective analysis which is able to give
finite descriptions of unbounded communication topologies that distinguish be-
tween instances of recursively defined components. To our knowledge this is the
only existing analysis of mobile systems (excluding [Ven96b]) which can pro-
duce results of that level of accuracy without any strong restriction on the

base language. Previous works addressed the issue of communication analysis
in csp [CC80, Mer91] or cML [NN94, Col95a, Col95b]. In the latter papers, the
analysis techniques heavily rely on CML type information and cannot be applied
to more general untyped languages like the w-calculus.

In order to keep the presentation clear within a limited space, we had to make
some simplifying assumptions that can be relaxed in many ways, for example
by using more expressive abstract domains to denote relations between thread
and channel identifiers, like cofibered domains [Ven96a, Ven99], by refining the
abstract semantics to take more information into account, like the number of
instances of a channel or a thread, or by considering a richer version of the -
calculus with guarded choice, matching and nested replications. Finally, in view
of the encodings of classical language constructs (data structures, references,
control structures) in the m-calculus, it would be interesting to study the possi-
blity of using a static analysis of the w-calculus as a universal analysis back-end
for high-level languages.

Acknowledgements. I wish to thank Radhia Cousot, Patrick Cousot, Ian
Mackie and the anonymous referees for useful comments on a first version of
this paper.

References

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Com-
puter Science, 96:217-248, 1992.

[Bou92] G. Boudol. Asynchrony and the w-calculus. Technical Report 1702, INRIA,
1992.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Conference Record of the Fourth ACM Symposium on Principles of Pro-
gramming Languages, pages 238-252, 1977.

[CC80] P. Cousot and R. Cousot. Semantic analysis of communicating sequential
processes. In Seventh International Colloguium on Automata, Languages
and Programming, volume 85 of LNCS, 1980.

[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
logic and computation, 2(4):511-547, August 1992.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the Fifth Conference on Principles
of Programming Languages. ACM Press, 1978.

[Col95a] C. Colby. Analyzing the communication topology of concurrent programs.
In Symposium on Partial Evaluation and Program Manipulation, 1995.

[Col95b] C. Colby. Determining storage properties of sequential and concurrent pro-
grams with assignment and structured data. In Proceedings of the Second
International Static Analysis Symposium, volume 983 of Lecture Notes in
Computer Science, pages 64-81. Springer-Verlag, 1995.

[Cou81] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick
and N.D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 10, pages 303—-342. Prentice-Hall, Inc., Englewood Cliffs, 1981.

[Deu92]

A. Deutsch. A storeless model of aliasing and its abstraction using finite
representations of right-regular equivalence relations. In Proceedings of the
1992 International Conference on Computer Languages, pages 2-13. IEEE
Computer Society Press, 1992.

[DPLT96] P. Degano, C. Priami, L. Leth, and B. Thomsen. Analysis of facile pro-

[Grad1]
[Hoa85]
[Jon81]
[Kar76]
[Mer91]

[Mil89]
[Mil91]

grams: A case study. In Proceedings of the Fifth LOMAPS Workshop on
Analysis and Verification of Multiple-Agent Languages, volume 1192 of Lec-
ture Notes in Computer Science, pages 345—-369. Springer-Verlag, 1996.

P. Granger. Static analysis of linear congruence equalities among variables
of a program. In TAPSOFT’91, volume 493. Lecture Notes in Computer
Science, 1991.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
H.B.M Jonkers. Abstract storage structures. In De Bakker and Van Vliet,
editors, Algorithmic languages, pages 321-343. IFIP, 1981.

M. Karr. Affine relationships among variables of a program. Acta Informat-
ica, pages 133-151, 1976.

N. Mercouroff. An algorithm for analysing communicating processes. In
Mathematical Foundations of Programming Semantics, volume 598 of LNCS,
1991.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Milner. The polyadic m-calculus: a tutorial. In Proceedings of the Interna-
tional Summer School on Logic and Algebra of Specification. Springer-Verlag,
1991.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. In-

[NN94]

[Tur95]

[Ven96a]

[Ven96b]

[Ven99]

formation and Computation, 100:1-77, 1992.

H. R. Nielson and F. Nielson. Higher-order concurrent programs with fi-
nite communication topology. In 21°* ACM Symposium on Principles of
Programming Languages, 1994.

D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation.
PhD thesis, Edinburgh University, 1995.

A. Venet. Abstract cofibered domains: Application to the alias analysis of
untyped programs. In Proceedings of the Third International Static Analysis
Symposium SAS’96, volume 1145 of Lecture Notes in Computer Science,
pages 366-382. Springer-Verlag, 1996.

A. Venet. Abstract interpretation of the m-calculus. In Proceedings of the
Fifth LOMAPS Workshop on Analysis and Verification of High-Level Con-
current Languages, volume 1192 of Lecture Notes in Computer Science, pages
51-75. Springer-Verlag, 1996.

A. Venet. Automatic analysis of pointer aliasing for untyped programs. Sci-
ence of Computer Programming, 1999. To appear.

